Inhibitors of histone deacetylases in class I and class II suppress human osteoclasts in vitro.
نویسندگان
چکیده
Histone deacetylase inhibitors (HDACi) suppress cancer cell growth, inflammation, and bone resorption. The aim of this study was to determine the effect of inhibitors of different HDAC classes on human osteoclast activity in vitro. Human osteoclasts generated from blood mononuclear cells stimulated with receptor activator of nuclear factor kappa B (RANK) ligand were treated with a novel compound targeting classes I and II HDACs (1179.4b), MS-275 (targets class I HDACs), 2664.12 (targets class II HDACs), or suberoylanilide hydroxamic acid (SAHA; targets classes I and II HDACs). Osteoclast differentiation was assessed by expression of tartrate resistant acid phosphatase and resorption of dentine. Expression of mRNA encoding for osteoclast genes including RANK, calcitonin receptor (CTR), c-Fos, tumur necrosis factor (TNF) receptor associated factor (TRAF)6, nuclear factor of activated T cells (NFATc1), interferon-β, TNF-like weak inducer of apoptosis (TWEAK), and osteoclast-associated receptor (OSCAR) were assessed. Expression of HDACs 1-10 during osteoclast development was also assessed. 1179.4b significantly reduced osteoclast activity (IC(50) < 0.16 nM). MS-275 (IC(50) 54.4 nM) and 2664.12 (IC(50) > 100 nM) were markedly less effective. A combination of MS-275 and 2664.12 inhibited osteoclast activity similar to 1179.4b (IC(50) 0.35 nM). SAHA was shown to suppress osteoclast activity (IC(50) 12 nM). 1179.4b significantly (P < 0.05) reduced NFATc1, CTR, and OSCAR expression during the later stages of osteoclast development. Class I HDAC 8 and Class II HDAC5 were both elevated (P < 0.05) during osteoclast development. Results suggest that inhibition of both classes I and II HDACs may be required to suppress human osteoclastic bone resorption in vitro.
منابع مشابه
Effects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملSubtype selective substrates for histone deacetylases.
To probe the steric requirements for deacylation, we synthesized lysine-derived small molecule substrates and examined structure-reactivity relationships with various histone deacetylases. Rat liver, human HeLa, and human recombinant class I and II histone deacetylases (HDACs) as well as human recombinant NAD(+)-dependent SIRT1 (class III enzyme) were used in these studies. A benzyloxycarbonyl ...
متن کاملClass II and IV HDACs function as inhibitors of osteoclast differentiation
Histone deacetylases (HDACs) are negative regulators of transcription and have been shown to regulate specific changes in gene expression. In vertebrates, eighteen HDACs have thus far been identified and subdivided into four classes (I-IV). Key roles for several HDACs in bone development and biology have been elucidated through in vitro and in vivo models. By comparison, there is a paucity of d...
متن کاملComparative effects of histone deacetylases inhibitors and resveratrol on Trypanosoma cruzi replication, differentiation, infectivity and gene expression
Histone post-translational modification, mediated by histone acetyltransferases and deacetylases, is one of the most studied factors affecting gene expression. Recent data showing differential histone acetylation states during the Trypanosoma cruzi cell cycle suggest a role for epigenetics in the control of this process. As a starting point to study the role of histone deacetylases in the contr...
متن کاملNonisotopic substrate for assaying both human zinc and NAD+-dependent histone deacetylases.
Histone deacetylases (HDACs) are involved in the regulation of transcription and their inhibitors are a promising class of new anticancer drugs. We have previously reported Boc(Ac)Lys-AMC, also termed MAL, as a fluorescent substrate for HDACs. Now we present a modification of MAL called Z-MAL that is characterized by an increased rate of conversion by histone deacetylases of classes I and II an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cellular physiology
دوره 226 12 شماره
صفحات -
تاریخ انتشار 2011